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Numerical calculation of gravity-capillary interfaclal waves
of finite amplitude

Jean-Marc Vanden-Broeck
Departmms of'Mathematic Staxfd Unsiy. Sta nford Calfornia 94305
(Received 26 February 1980; accepted 20 June 1980)

Omvity-capillary progresive interfacial waves on the interface between two semi-infinite fluids of different
densities are considered. An intepo-differential equation for the unknown shape of the interface is derived.
By introducing a mesh and finite difference, this equation is converted into a finite set of nonlinear algebraic
equations. These equations are solved by Newton's method. In the limiting case of pure gravity waves, the
results obtained are in good agreement with previous calculations. Two continuous families of capillary.
gravity waves are studied. A generalization of Wilton's ripples for interfacial waves is presented.

I. INTRODUCTION that all variables become dimensionless. We also
choose a frame of reference in which the flows are

Over the past decade important progress had been

achived in the calculation of free surface waves. Sch- seady.

wartz' extended Stokes, series for pure gravity waves The fluids are assumed to be incompressible and
to high order by computer and then recast these series irrotational. Thus, we define stream functions # and
as Padd apDroxlmants. High accuracy solutions were 02 and potential functions 01 and 02 for the lower and
obtained inthat way. Sincethen, thistechniquehasbeen upper fluids, respectively. Without loss of generality

applied successfully to different kinds of surface waves we choose 01 = 42 = 0 on the interface and 01 =02 = 0
such as solitary waves and gravity-capillary waves. ' at one crest. Next, we introduce rectangular coordin-

ates (x,y) with the x axis parallel to the velocities at
Onthe other hand, anumber of linvestigators have infinite distance from the interface and with the y axis

obtained high accuracy solutions by using direct num- directed vertically upward. In addition, we define the
erical approaches based on an integro-differentla equn- capillary number K, the wave speed parameter p, and
tion formulation. These calculations confirm the valid- the density parameter p by the relations
ity of the use of the Padd approximants as applied to
surface waves. However, for very steep waves the K =4v2T/pgX2 , (1)
numerical approach turns out to be more efficient than = 2rc /gx (2)
the Padd approximant technique. -

Very little work has been done on the computation of P P/Pt (3)

nonlinear interfacial waves. The main results are con- Here, p, and P2 are, respectively, the densities in the

tained in a paper by Holyerlo who used Padd approxi- lower and upper fluids.
mants to compute pure gravity interfacial waves. On the interface, the Bernoulli equation and the pres-

Inthe present paper, we compute gravity-capillary in- sure jump due to surface tension yield
terfaclal waves by a direct numerical scheme. In Sec.
U, the problem is formulated as a nonlinear integro- 2(q pql)+(1-p)y K - = (1 -p)

(qp2 I _ __y+ IT P (4)
differential equation for the unknown shape of the in- 0 1 4w

terface. In Sec. Il, this integral equation is solved by
Newtons iterations. The mathematical formulation where q, and q2 are the magnitudes of the velocity in the i .r

and the numerical method are similar in philosophy, if lower and upper fluids. R is the radius of curvature of

not in detail, to the procedure used by Schwartz and the interface counted positive when the center of curva-

Vanden-Broeck t and Vanden-Broeck and Schwartz8 to ture lies on the side of the lower fluid. The choice of

compute surface waves. The results are presented the constant in Eq. (4) fixes the origin of y as the undis-

in Sec. IV. In the particular case of pure gravity waves turbed level for which the curvature is zero and q, =q2

our results agree with those obtained by Holyer. t °  = 1.

Thus, the validity of the use of the Padd table as applied We shall consider z = x + iy as an analytic function of
to interfacal waves is confirmed. Many different fam- the complex variables ft = 01 + i10 and fs- O2+jO',
ilies of gravity-capillary interfaclal waves exist. In respectively, on the half planes 4t - 0 and 4, 2 0. Then,

See. IVB we shall study two ofthem. A direct gener- the interface can be represented parametrically in two
alization of Wilton's ripples is presented. different ways, namely, x(o,,0.), y(ol,0.) and x(01,0.),

y(0 ,, 04), which we shall write x, (0), y,(0 1 ) and x(.),
II. MATHEMATICAL FORMULATION Y2(0,).

We consider two-dimensional progressive waves of To determine the shape of the interface we note that

wavelength x and phase velocity c, propagating under the 8x/00, + iay/ar -1 and ax/a02 + iOy/80 -1 vanish,

combined effect of gravity g and surface tension T respectively, at 4, =_-l and = + -. Therefore, their

along the interface between two fluids. We measure real parts on the lines 0, = 0 and 03 = 0 are the Hilbert
lengths in units of x and velocities in units of c, so transforms of their imaginary parts.
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dx, =I ddl' once method. Intro&ing a uniform mesh we have
dot J '-4, (5) ot=(i-l)/IJ, i=1 .... N +1. (18)

dx , 00. d/ d . (6) Since the wave is symmetrical, we have

We now use the assumed periodicity and symmetry of t&,) =0 .
the surface to rewrite (5) and (6) in the forms *1-1 0-

d--L =1 -e ( --1 [cotw(1 - 01) - cotw(O'+ )]d' Thus, the unknown function ay/a8 can be represented
do( d't by the vector of dimension N - 1,

(7) Y' =v ..... Y)
d. 2 = 1 +, do 4 cotr(0 -* 2 )- cot(0*+ 02)d0. where

(8)d

Since 01 * 02 at two points in contact on the interface, ' "
we define the function We now define the midpoints y, =(21 + , 4), i= 1...,

02=k(ol) , (9) N and we represent the values of

by the relations &L dxL dh d'x dv
x,(,)=x[h(¢)],(10) do,'1 dot' d ' -, ,

at the points y, by the vectors y., x., y., h, h,, X,

(U) and y,.

h(0)=0. (12) We seek to satisfy the system (7), (15), and (16) at

Thus, we have the points V,. The integrals in Eqs. (7) and (15) are

dx2  .dh ' evaluated at the points v, by the trapezoidal rule (which
d 2  -d~ dt (13) is of infinite order since the integrands are periodic).

The integration is over the points 0'. The singularities

dyz dyt~(14) of the Cauchy principal values are automatically taken
d0P2 =d', Od I" into account since the quadrature is symmetrical with

respect to the singularities. Thus, we obtain from Eqs.Substituting Eqs. (13) and (14) into Eq. (8) we obtain (7an(1)(7) ad (15),

da (dh' 1+(--.0 {cot[1h(0) )-h(0t) 1+AY' , (19)
dol-d0 f, dO

-cotnjh(0P)+h(0,)}d@ . (15) x. =h. +B(h)Y' . (20)

Here, A is a known matrix and B a matrix whose ele-
ments are nonlinear functions of the vector

_ P d h 1 2 2 -1,.
t -# Lido I r t + l _ 1h0-PA t =[h(01), . , ( .l

K .,dX v Y d2x dx t ) 2 d'ye 2\-3/2  The vector y. is expressed in terms of Y' by a sixth-
, - d* ! + ) J order quadrature formula. Thus,

-- (1 -p). (16) Y=Y+CY, (21)
4w where C is a known matrix. The elevation Y, of the in-

In addition to the parameters K, 1A, andp, agivenwave terface at 01 =0 has to be found as part of the solution.
is characterized by a third parameter which is a mea- Next, we express x:,y.,h, It., and y"' In terms of z',
sure of the wave amplitude. We choose this parameter Y', and I,, by sixth-order interpolation and difference
to be the steepness s defined by formulae.

S =y(O) -y(i). (17) Substituting Eqs. (19) and (21) into Eq. (15) at the

Dimensional analysis implies that a functional relation- points ,i, 1,... , N -I andqs.(16) at the points
ship should exist among the four numbers X,,, p and s. V,, i =, . .. ,N we obtain a system of N - I nonlinear
We fix three of these parameters and we seek three algebraic equations for the ZN + I unknowns Y', IhYo,
functions and p. Relations (12) and (17) provide two extra equa-

xi(ol), y,(0 1 ), andk(0), 0410,1/21 , tions. Thus, for given values of K,P, and s we have
and a value for the fourth parameter that simultaously a system of IN + I equations with 2N + I unknowns. This

and vaue or he ourh pramtertha siultneosly system is solved by Newton's iterations.
satisfy Eqs. (7), (15), and (16). In the present paper,

we fix K,p, and s, and find p as part of the solution. IV. DISCUSION OF RESULTS

III. NUMERICAL ANALYSIS A. Pure rwvity waves

We seek a numerical solution of the integro-differen- Before proceeding to the general case where both
tial system of Eqs. (7), (15), and (16) by a finite differ- gravity and surface tension are taken into account, we
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shall consider the limiting case of pure gravity waves.

In a recent paper, Holyer t computed accurate solu-
tions for pure gravity interfacial waves up to a maxi- 0.1
mum value of the steepness at which the profile be-
comes vertical at some point. These solutions were
obtained by calculating the coefficients in Stokes' 0.
expansion on a computer and than recasting the result-
ing high-order polynomials as Padd approximants.

The numerical procedure of Sec. III was used to com- -0.1
puts gravity waves with p = 0.1. Preliminary computa-
tions showed that an accurate solution for s > 0.1 could 0.2
not be computed with equal increments in the velocity
potential 01. The reason is that the spacing of the 0 0 0 0 0 0

mesh points becomes too sparse near the crest where

the velocity is small. A similar situation was pre- FIG. 1. Computed wave profiles for K=0, p=0.1, and s=0.05,
viously encountered by Chen and Saffman, e Schwartz 0.127, 0.2215.

and Vanden-Broeck,' and Vanden-Broeck and Schwartz a

in the case of surface waves. These authors found that and the dispersion relation is given by
this difficulty could easily be overcome by concentrat-
ing the mesh points near the crest by an appropriate + = + .
change of variable. In the present problem, we intro- + 1 -p (23)

duce a new variable P by the relation It can easily be verified by substituting Eqs. (1) and (2)
into Eq. (23) that linear waves of wavelength x and X/n
travel with the same speed c if

Here, the function h is defined by Eqs. (10)-(12). The K=(1-p)/n (24)
numerical scheme was then used with equal increments
in the new variable P. In Table I, we present values of where n is an integer greater than 1. This nonunique-
M for different values of the steepness s computed with ness in the first approximation implies that some of the
N = 15, 20, and 25. The values for N =25 have con- coefficients in the Stokes' expansion will become infin-
verged to five decimal places for s < 0.13 and to three ite when K assumes one of the values (24). In the par-
decimal places for s > 0.13. These values agree with ticular case p = 0, these coefficients have been com-
those presented graphically by Holyer. 0 Thus, the puted to fifth order by Wilton" and to 100th order by
validity of the use of the Pad6 approximant method as Hogan.5 Solutions corresponding to the critical values
applied to gravity interfacial waves is confirmed. A (24) can be found by revoking Stokes' hypothesis and
few typical profiles are shown in Fig. 1. For s - 0.222, reordering the terms of the expansion. For example,
the profile becomes vertical at a small distance from Wilton1 found two solutions for K = l and p = 0, i.e.,
the crest. It is worthwhile mentioning that our num- for the critical value (24) corresponding to n=2. The
erical scheme appears to be more efficient than the numerical work of Schwartz and Vanden-Broeck shows
Padd table method since the highest wave presented by clearly that these two solutions are, in fact, members
Holyer corresponds to s = 0.19.

B. Gravity-capillary waves
Some insight into the problem can be gained by con-

sidering a solution in the form of a Stokes, expansion.
Thus, we seek a solution as a Fourier expansion in
the horizontal coordinate by assuming that the nth 1.6
Fourier coefficient is nth order in the amplitude. In
the first approximation, the waves are linear sine waves

1.4

TABLE I. Values ofp for 0.05'4 s 14 0.22, g = 0 and p - 0.1. 2

N'IS N=20 N1. 1

0.05 0.835097 0.835105 0.835107 1.0
0.095493 0.880605 0.880620 0.880624
0.127324 0.930479 0.930483 0.930484
0.159155 0.99 561 0.996498 0.996480 0.8
0.1909S6 1.082550 1.082075 1.081947
0.20690 1.137163 1.135659 1.135199 I I I
0.21 1.149422 1.147491 1.146 868 0.3 0.4 0.5 0.6 0.8
0.22 1.196938 1.192921 1.190878 FIG. 2. Variation of speed parameter 1 with capillary number

for s0.03 and p=0.1.
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FIG. 3. Two wave profiles for K=0. 4 5, p=0.1, and s=0.03.

FIG. 4. Steep profile for 9c= 0.45.
of two different families labeled 1 and 2. Families 1
and 2 agree, respectively, with the Stokes, expansion
for K > ' and - < K < A. scheme is limited by the small values of the velocity

at the trough in the upper fluid. We expect the limiting
Inthe present section, we use the numerical procedure profile to exhibit a small trapped bubble at the trough

of Sec. III, to compute the equivalent of these two faro- with a stagnation point at the point of contact in the
ilies in the case p=0.1. The critical value corres- upper fluid.
ponding to n=2 in Eq. (24) is then K=0.45. We started
the i terations at K= 0.7 and s = 0.03. A sine wave was ACKNOWLEDGMENTS

used as an initial guess. The numerical scheme was
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